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Abstract

Urban river floods pose significant challenges to modern societies, impacting health, property,
infrastructure, cultural heritage, and the environment. Over centuries, the perception of flood risk has
evolved from an external threat to a societally constructed risk, influenced by vulnerability and
exposure. Geographic Information Systems (GIS) have emerged as an effective, interdisciplinary tool
for flood risk assessment, integrating natural and socio-economic data to create comprehensive flood
risk maps. This paper reviews 60 academic studies to identify the strengths and limitations of GIS in
flood risk mapping and underscores the importance of incorporating social dimensions and
vulnerability indices. The inclusion of local community participation and social dynamics is crucial
for developing effective, context-specific flood risk management strategies.

Keywords: urban river floods, social evolution, flood, risk management, river culture, GIS
« Apyn mavrwv Dowp », Oalns/ “Water is the beginning of all things”, Thales

River Floods: A Continuous Threat to Urban Societies

Urban environments are complex yet fragile ecosystems that are exposed to climate risks and their
consequences for societies. Natural hazards, such as floods, pose a continuous threat to the
development and sustainability of contemporary societies, as they can cause significant damage to
health, property, infrastructure, cultural heritage and environment.

According to the Directive 2007/60/EC of the European Parliament and the Council, a flood is defined
as “the temporary covering by water of a land not normally covered by water”. Last decades have
been characterized by a significant increase in the frequency of floods, leading to substantial
socioeconomic and environmental consequences. Between 2000 and 2021, floods represented 40%
of all natural disasters and affected, directly or indirectly, more than 140 million people per year
worldwide. [1], [2] Arrighi’s analysis in 2021 revealed, that more than one thousand cultural heritage
sites all over the world, that underlined that 35% of natural and 21% of cultural and mixed UNESCO
national world heritage sites, are currently in risk because of river floods, in terms of hazard and
exposure.[3]

The inundation risk posed by urban rivers is influenced by several determinants, such as the natural
characteristics of the river itself, including its morphology, dimensions, vegetation, water depth, and
downstream hydrological conditions. Simultaneously, contemporary factors underscore the
amplification of flood occurrences, due to rapid urbanization, demographic expansion,
artificialization of natural areas upon riparian ecosystems, and the climatic alterations due to global
warming. [4], [5]
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Resilient Cities

Historical Floods: Myths and Early Risk Management

Throughout history, urban rivers have played a pivotal role in shaping human settlements, offering
plenty of advantages. They have served as a natural defence system for ancient cities, navigation roots
for commerce and trade, and harnessed hydraulic potential for diverse industrial purposes, including
tanning, milling, and more recently, electricity generation.

First communities were trying to explain the mysteries of natural disasters, by giving these
phenomena a spiritual character, with mythological and folklore stories all over the world
highlighting how the rivers were inspiring respect, awe and fear in human societies.

These narratives, from Scandinavian mythology, when Odin and his brothers killed the giant Ymir,
whose blood inundated the earth, to the Biblical tale of the Great Flood in Genesis, when Noah's ark
served as the vessel of salvation, illustrate how ancient civilizations searched ways to interpret and
contextualize devastating inundations.[6], [7]

According to ancient Greek mythology, rivers were "born" by the Titans Oceanus and Tethys and
considered to be gods. Kifissos River (Athens and Boeotia), Ilissos (Athens), Maiandros (Asia
Minor), Alfeios and its tributary Kladeos (Peloponnese, Olympia), are some of these Greek
mythological river Gods. People were praying to the water element for protection, blessing and
assistance, while they would offer prayers and sacrifices to them, seeking protection on their journeys
over their waters, blessing for good flow and behavior of the rivers, and other favorable actions. [§]

From Allies to Obstacles: Rivers in the Age of Industrialization

As societies were evolving, industrialization and rapid growth of the population, alongside with the
technological evolution changed radically the behavior of the societies against the rivers. That
resulted in extensive land consumption and artificialization, affecting riverbanks, floodways, and
water basins. The previous respect for the water element, was switched, when the now called “modern
city” started percieving rivers as obstacle rather than asset. Measures such as canalization, dam
construction, and the implementation of artificial barriers, or even entirely covering of them, have
been taken in previous decades to address climate hazards like floods or droughts, or in order to
prevent water pollution in the cities. [9]

The process of artificialization has been identified as a significant disruptor of the natural
hydrological cycle. This disruption leads in decreased vegetal interception, evapotranspiration, and
infiltration, coupled with an increase in both the volume and velocity of surface runoff. These changes
are primarily attributed to vegetation removal, soil imperviousness, modifications to natural drainage
patterns, and the implementation of artificial drainage systems. [1]

An illustrative example of the consequences artificialization can be observed in Trikala (Thessaly,
northern Greece) where Letheus river had been artificialized multiple times including the covering of
sections of the river and the construction of dams. These interventions, despite several warnings
issued in the late 19th century, led to the largest and most destructive flood of the Letheus River. This
flood event occurred in June 1907, resulting in numerous fatalities and extensive property damage.
Diakakis (2012), in his comparative evaluation of 545 flood events in Greece of the period 1880
2010, identified the Trikala flood as the most destructive in terms of human casualties, that caused
at least 300 fatalities. [10], [11]

Another severe event was that of November 2017 in Mandra, (Attica, central Greece) owed to the
covered torrents of St. Catherine and Soures. It was the result of a 150—160 mm rainfall event of 7 h
duration that provoked a flash flood, with a death toll of 23 people and 6000 people being affected.
Crucial was the role of the settlement’s location, on the two streams, with no planning standards. [11],
[12], [13] These types of events underscored that the urban integration of the river primarily requires
the removal of potential obstacles to smooth flow and the urgent construction of necessary flood
control infrastructures.
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Resilient Cities

More recent example is that of Dubai flood on April 2024, were a huge and non-expected rainfall
caused a great socio-economic-infrastructure impact on the city. The cruelty of the event itself,
probably related to the climate changing conditions, alongside with the urban planning of the city that
didn’t take into consideration flood risk, led to a great catastrophe for the area. [14]

Modern Perspectives: Social Dimensions of Flood Risk

After the 1980s the perception of floods as an external risk for the society has been reconsidered. [15]
Decision makers agreed on the fact that natural disasters, such as floods, are mostly socially
constructed events related -as an internal risk- to the vulnerability of a system, and its characteristics.
Anderson underlines since 1995 that “Whereas previous assessments focussed on the "acts of nature"
that come from outside human agency, later assessments have acknowledged that it is largely human
actions, decisions and choices that result in people's vulnerability to natural events.” [16]

Natural disasters are not necessarily 'disastrous' as they are inherently occurring phenomena on the
planet. The actual risk arises from the adverse impacts of these phenomena on human-made
environments. [17] Weichselgartner underlines that “a natural disaster, in a pure sense does not
exist; rather there is the interaction of changes in physical systems with existent social conditions.
The disaster itself occurs within society and not within nature.” [18]

Social vulnerability is a term that explain this susceptibility of a population or a social system towards
these climate extremes, because in a theoretical non vulnerable system, there is no need of adaptation
to natural risks. ! [19], [20] Various researchers and sociologists have pointed out that disasters have
more to do with the social, political, and economic aspects of a group, since they reveal most of the
times inequalities, injustices and weaknesses they affect mostly the socially wvulnerable
population.[21], [22], [23], [24] Poor population can be more vulnerable, since they can present a
lack of access to coping resources and represent weak links in mitigation capacities. Elder people,
women, people with disabilities or immigrants can be more vulnerable in a crisis situation, because
of unequal access to information and education, physical and societal difficulties or due to
communicational barriers.

Resilience describes the capacity of a system facing a risk to organize, predict, prepare, respond, resist
disturbances, absorb impacts, recover, and reorganize, in order to maintain the same function and
structure and continue to fulfill its purpose [28], [29], [30] Godschalk provides a well-framed
definition of resilient cities, stating that resilience entails a city's capacity to recover from severe
events without experiencing immediate chaos or lasting harm. He underscores the value of networked
social communities and robust lifeline systems in building stronger cities through learning from past
events. A resilient city, according to him, is a city that equally takes into consideration the natural
systems (topography, soil, waterways...) and anthropogenic parameters (buildings, roads, energy
facilities... ) [24]

In order to deal with the floods, the European Commission enacted a Directive (ED) 2007/60/EC for
the assessment and management of flood risks, requiring from each member the production of Flood
Hazard (FHM) and Flood Risk Maps (FRM). These maps should focus on prevention, protection, and
preparedness. In order to give rivers more space, these plans should, where possible, consider the
conservation and/or restoration of floodplains, as well as measures to prevent and reduce damage
caused by floods to human health and life, the environment, cultural heritage, economic activity, and

U Although, history has witnessed as well and pure natural disasters and other events that occurred on the planet on a
scale much larger than what the scale that humanity could affect (e.g., planetary temperature changes such as those
that occurred towards the end of the 'Precambrian’ geological era, which saw the coldest period in the planet's history
leading to the extinction of many animal organisms, prolonged periods of drought, volcanic eruptions, etc.), which are
beyond the scope of the present research.
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infrastructure. [31] In order to achieve this goal from this ED, and plan sufficient FHM/FRM, an
urgent need for a comprehensive and sustainable approach has been revealed, involving the
participation of all stakeholders. Contemporary urbanization strategies have started to reconsider their
perception towards urban floods and adaptation strategies, aiming to define new solutions that
embrace resilient and flexible projects that are promoting the idea of socially coexisting with urban
fluvial floods rather than combating them. [9], [32], [33]

Mileti, in his book “Disasters by Design: A Reassessment of Natural Hazards in the United States”,
emphasized as early as 1975, the importance of adopting an interdisciplinary approach against natural
disasters with a long-term perspective that includes engagement with local communities. According
to him, “Local resiliency with regard to disasters means that a locale is able to withstand an extreme
natural event without suffering devastating losses, damage, diminished productivity, or quality of life
and without a large amount of assistance from outside the community’’ [34]

The main challenge towards this reconsideration of the urban approaches though, lies in the difficulty
of collecting, assessing and evaluating technical and social data from diverse perspectives and fields,
and effectively communicate them to local authorities and stakeholders in a way that is easily
understandable and coherent.

In this regard this paper proposes the use of Geographic Information System (GIS) software as an
interesting tool that could serve as a connecting element for this reconsideration process towards an
effective flood risk management culture for the contemporary societies.

GIS as an efficient Tool for Flood Risk Assessment

Geographic Information Systems (GIS) is a computer system designed to create digital
representations of the Earth's surface by visualizing specific characteristics. Since its inception 60
years ago, GIS has rapidly evolved to a vital tool in various fields of application, research, and global
business. Initially developed in Canada in 1963 by Roger Tomlinson for national land-use
management, GIS has since grown into an integrated computer system for data visualization, storage,
and manipulation. [5], [35], [36] ESRI's ArcGIS, the commercial form of the program was inicially
launched in 1981, while Quantum GIS (QGIS), founded in 2002 as a free and open-source alternative.
[37], [38] Today, GIS serves as an essential information database, analytical tool, and decision
support system, facilitating complex spatial analysis and visualization.

Urban river floods are multi-dimensional events that combine both spatial and non-spatial data. [5],
[39] Identifying risk zones within cities and understanding their interactions with the urban fabric are
crucial steps in developing effective urban flood management plans. GIS can perform hydrologic and
social analyses and thus it has been a valuable resource for researchers, urbanists and public
authorities all over the world in order to produce natural risk maps for the cities. [2], [40], [41]

GIS is commonly used alone or alongside with other systems and programs. For example, RS or
Remote Sensing, is a well knowing technique using satellite or aerial imagery to gather data about
land cover, topography, and other relevant factors. Hydrological Modelling (such as HEC-RAS,
wetspa, hydrotel, swat or ArcHydro - an extension of ArcGIS) involves using computational models
to simulate the flow of water during flood events, using as data terrain, land use, soil type,
precipitation, and drainage networks to predict flood extents and depths. MCDM, or Multi-Criteria
Descision-Making techniques (AHP, FUZZY AHP, ANP, DEMATEL, PROMETHEE, WLC,
MAUT, TOPSIS, VIKOR, ELECTRE etc) are used to evaluate and prioritize multiple criteria or
objectives. Last years, Machine Learning, or ML, algorithms (DT, RF, SVM, ANN, LR) have been
used in order to analyse large datasets to identify complex patterns and relationships between various
factors and flood risk. The use of these methods separately or the collaboration is standing as an
efficient way of data analysis Flood maps production.
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Criteria of evaluation

Throughout academic literature, there is a continusly increasing number of applications of GIS
technology as a methodological tool in order to examine flood hazard and risk in different case
studies, evolving alongside with the technological development and our knowledge on the matter.
This paper is effecting a state of the art in an amount of 60 papers, using a mixture of different criteria
of evaluation in order to study and analyse the benefits and limitations of this tool in the FRM
production.

The methodology for search, inclusion, and evaluation adheres to the parameters outlined in Table 1.
Specifically, the chosen papers center on the examination of riverine or urban flash floods with the
aim of producing flood analysis or flood risk maps. Selection criteria prioritize relevance to the
research topic, publication year to trace methodological evolution, and geographic diversity of case
studies to encompass varied socio-economic and geographical contexts across continents and
countries.

Table 4 Statistical data about the reviewed papers

Research procedure

1
v

Keywords
Urban, floods, rivers, GIS
(results with all combined
search words “+”)

1
A4
Main Databases
Science direct (9,149)
Tandfonline (8,169)
Other sources

1
\/

Criteria of inclusion:
_Date of publication: Between 2000-2024 (most valuable the most
recent ones)
_Language: Articles written in English, French, Greek Number of articles reviewed per year
_Diversity of techniques
_Geographical Diversity

E STUDY LOCATION

Total refined
publications reviewed:

Random sample of
70 case studies

(goal: 100)
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Table 5 Results from criteria and techniques used in the reviewed papers

Types of factors used
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Table 6 Papers reviewed analysis
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Title study | Continent| publicati | APPIeati | Techr 212, | somnn | FR.LR,S1 | ROC [ data wemr Factors used Authors | source
location on e ‘Woe, wi e
Tainall, land usefland cover (LULC). elevallon, slope percent. curve number (GN) disance fo v,
Urban flood risk mapping using the GARP and QUEST models: A Iran Asia 2019 FRM | BandC x x x distance to channel, and depth to groundwater, urban density, quality and age of buikdings. Dummewn. | ScienceDirect
comparative study of machine learning techniques e baaton denely
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Findings: Bridging Technical and Social Aspects in Flood Risk Mapping

By examining Table 3, it is evident that the largest percentage, 32%, of the papers used qualitative-
based empirical modeling techniques (such as MCDM/AHP) to produce Flood Hazard Mapping
(FHM) and Flood Risk Mapping (FRM). Smaller percentages of papers used GIS in collaboration
with statistical methods, hydraulic models, machine learning techniques, or a mix of techniques to
achieve even more accurate results. Out of the 60 papers reviewed, 36 papers, have verified the results
of their maps either using technical programs like ROC (Receiver Operating Characteristic) or by
utilizing historical data from previous floods.

Almost 30% of the papers focus on FHM production, while the rest are focused on flood susceptibility
and flood risk mapping. By examining the input criteria for the FSM/FRM production is interesting
to notice that elements such as elevation, slope and river network are consistently examined across
these studies, while variables like curvature and lithology are addressed in only a subset of them.
(Table 2)

However, in terms of urban and social criteria, while land use and land cover (LULC) emerge as the
predominant factor observed in the majority of papers, it can provide only a preliminary
understanding of social parameters. While technical criteria represented the 74% of used factors in
the totality of the papers, only 20% of factors are related with human infrastructures and, even less,
6% of factors have socio-economic character.

It’s interesting to mention that analyses that include socio-economic criteria are found in high
majority in articles of the last five years (only 3 articles included these types of criteria before, on
2008, 2012 and 2017), proving this increasing reconsideration on the matter of including social
parameters. Although, they were still representing a minority of the FSM / FRM (34% of the articles
included these types of criteria from 2019 to 2024).

Even though the majority of articles was focused on mostly technical analysis to produce the flood
risk maps, there are some articles that searched deeper the socio-economic side of the vulnerability.
Ajtai et al. (2023) made a social vulnerability analysis for their FRM, searching the index and the
value of each social characteristic. They agreed that social vulnerability is influenced not only by the
inherent characteristics of a certain community, but also by location, spatial distribution, hazard type,
and hazard characteristics. The interaction between all these factors leads to complex relationships
that must be considered and carefully analyzed. [42]

Bulen and Miles (2024) defended that Participatory GIS (PGIS) can help bridge the gap between
modelled and perceived flood risk by involving the local community in research and questioning them
on their past flood experiences. They conducted a survey in Reading, a large town in Central Southern
England, incorporating local communities into the Flood Risk Management (FRM) production using
PGIS. The study found a high level of agreement between participatory mapping and flood model
outputs, demonstrating that local communities, with prior flood exposure or flood risk education,
possess valuable knowledge that can inform effective flood risk strategies. [43]

Discussion/Conclusion

Urban river floods pose significant challenges to communities worldwide. The perception of flood
risk has evolved from viewing natural disasters as external threats to recognizing them as internal
societal risks requiring an efficient socio-technical interdisciplinary approach. Sustainable and
resilient urban futures demand tools that facilitate research for urban designers, policymakers, and
stakeholders. The contemporary cities need to think beyond the technical solutions to prevent
catastrophic events, and to truly understand the social dynamics of each place and the way that society
interacts in the case of crisis in order to propose urban and political solutions that reflect the special
needs of each place.

Aknowledging the diverse social factors influencing vulnerability—such as population experience
with disasters, socioeconomic inequalities, gender norms, and political-cultural contexts—enables
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better identification of critical zones for urban reconsideration and development of targeted urban
strategies. The society stands in the core of an urban environment, that defines its dynamics and
evolution so it is critical to be an essential factor to be taken into consideration into the risk
management strategies. The participation of the population in the descion making and the
understanding of the social dynamics of each place is crucial in order to propose sustainable solutions.
Geographic Information System has emerged recent years as an important tool, offering powerful
capabilities in data visualization, analysis, decision-making support and fast and comprehensible
maps production. GIS is software that can easily import, analyze and visualize various data, assess
flood hazards, understand spatial dynamics, and communicate simply the results in a form of
understandable basic maps. Stakeholders, such as urban designers and policymakers can exploit the
multilayered nature of GIS technology in order to identify the urban priority areas for flood
management strategies according to the socioeconomic priorities of the places.

The results of this literature review underline that despite the fact that the contribution of socio-
economic factors in flood risk analysis can result in more precise flood maps, technical criteria remain
predominant in flood risk assessments using GIS technology. Recent years indicate a progressive
increase towards the integration of socio-economic data, proving an evolving recognition of the
importance of social dimensions in flood risk management. However, this integration is still in its
preliminary stages and requires further research.

The pursuit of urban resilience vis-a-vis climate hazards necessitates a comprehensive framework
that combines natural and social dimensions. The incorporation of socio-economic data in map
production is crucial for identifying vulnerable populations and urban areas, reassuring that flood risk
management strategies are not only technically accurate but also socially equitable. Prioritizing the
requirements and experiences of population and employing qualitative approaches, interdisciplinary
collaboration, and participatory methods in the flood risk assessment is essential in order to create
resilient and sustainable urban environments and mitigate the impact of natural disasters.

By analyzing the socio-economic fabric of urban areas, stakeholders can identify marginalized
communities that are mostly affected by flooding events. Moreover, recognizing the socio-economic
drivers of vulnerability enables the formulation of targeted interventions that address root causes
rather than mere symptomes.

Interdisciplinary collaboration lies at the heart of effective flood risk management strategies.
Reinforcing a collaboration and an efficient dialogue between experts from diverse fields (such as
hydrology, urban planning, sociology, and economics) can result to the development of innovative
solutions that integrate technical expertise and socio-economic insights for a better risk management.
Furthermore, necessary are participatory methodologies that involve local communities in the
decision-making processes related to flood risk management. By incorporating local knowledge,
values, and experiences into planning, into a bottom-up approach, interventions are more likely to
resonate with the needs and aspirations of affected communities and reinforce the resilience of the
population.

In conclusion, the pursuit of urban resilience in the face of climate risks demands a holistic approach
that integrates both natural and social dimensions. By centering on the needs and experiences of
diverse urban populations, cities can become more adaptive, inclusive, and sustainable, thereby
mitigating the impact of natural disasters and enhancing the well-being and resilience of their
inhabitants.
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